
Tutorial on Convolutions

Ronan Collobert

October 1, 2002

1 Sequence Convolutions

Three types of GradientMachine layers are provided to deal with sequences convolutions:
TemporalConvolution, TemporalSubSampling and TemporalMean. These layers allow us
to contruct Time Delay Neural Networks[1]. We will have a look into the details of these
layers below.

1.1 TemporalConvolution

Given an input sequence (xt)t=1...N, the output sequence (yt)t=1...M of a
TemporalConvolution layer will be:

yi
t = bi + ∑

j

K

∑
k=1

wi, j,kx j
δ×(t−1)+k

where K is the size of the kernel, δ is the number of input frames incremented between
each application of the kernel, and bi and wi, j,k are the weights of the layer. The size M
of the output sequence is computed as follows:

M =
N− K

δ
+ 1

Thus, if δ (M− 1) + K < N, the last frames of (xt) will not be taken in account (See
Fig. 1). You could add some “dummy” frames in your input sequence to avoid this. Note
that δ 6= 1 means that you are doing a convolution and sub-sampling. Creating such a
convolution is quite easy: use the constructor

TemporalConvolution(int input_frame_size, int output_frame_size,
int k_w_=5, int d_t_=1);

where input_frame_size corresponds to the frame size of (xt), output_frame_size cor-
responds to the frame size of (yt), k_w is K and d_t is δ.

1.2 TemporalSubSampling

For this layer, we have:

yi
t = bi + ci

K

∑
k=1

xi
δ×(t−1)+k

Thus, the frame size of the input sequence is the same as the frame size of the ouput
sequence. δ is the “sub-sampling factor”. To create such a layer, just call:

TemporalSubSampling(int input_frame_size, int k_w_=2, int d_t_=2);

Same remarks apply concerning the size of input sequence as for TemporalConvolution.

2 2 Image convolutions

Input sequence

Kernel cannot be
applied here, because
there are not enough frames

Output frame sizeOutput sequence

K

d_t

Input frame size

Figure 1: Sequence convolution

1.3 TemporalMean

It computes the mean of the input sequence over time. It could be useful to do discrimi-
nation of sequences. We have:

yi
t =

1
N ∑

s
xi

s

The output sequence of this machine is a sequence with one frame and which has the same
frame size as input frames. The constructor is again pretty easy to evoke:

TemporalMean(int input_frame_size);

2 Image convolutions

Two layers are provided to deal with image convolutions: SpatialConvolution and
SpatialSubSampling. With these layers, it’s easy to create networks similar to LeNet [2].

2.1 SpatialConvolution

Given (xk)k=1...N, N input images of size wx × hx, the output (yk)k=1...M of this layer is
given by (M is the number of output images that you want):

y(i, j)
k = bk + ∑

l

K

∑
s=1

K

∑
t=1

wk,l,s,tx
(δw (i−1)+s,δh(j+t))
l

where K is the size of the kernel, δw and δh are the number of pixels incremented between
each application of the kernel onto the input image (over the width and the height), and bi
and wk,l,s,t are the weights of the layer. The size (wy× hy) of all output images is computed
as follow:

wy =
wx − K

δw
+ 1

hy =
hx − K

δh
+ 1

2.2 SpatialSubSampling 3

Thus, if δw (wy − 1) + K < wx or δh (hy − 1) + K < hx, then the last columns or last lines
of the input images will not be taken in account1. You may add some “dummy” lines or
columns in your input images to avoid this. Note that δ 6= 1 means that you are doing a
convolution and sub-sampling.
To construct such a layer, just use:

SpatialConvolution(int n_input_planes, int n_output_planes,
int width, int height, int k_w=5, int d_x=1, int d_y=1);

where n_input_planes is N, n_output_planes is M, width is wx, height is hx, k_w is
K, d_x is δw and d_y is δh.
The input frames given to the SpatialConvolution, when doing a forward(), is one big
vector containing all images. You have to provide all rows of the first image (row after
row), then all rows of the second image, and so on (See Fig. 2). Thus, the size of input

Your
Image

width

height
1

row 1
row 2

Your
Image height

2

row 1
row 2

width

row 1 image 1 row 2 image 1 row 1 image 2

Figure 2: Format of input and output frames when doing spatial convolution or sub-
sampling.

frames is n_input_planes*input_width*input_height. The output format is the same.
(And the size of output frames will be n_output_planes*output_width*output_height).
Even if data is given in one vector, it is considered as 2D-images when doing convolution!

2.2 SpatialSubSampling

The output images are computed as follow:

y(i, j)
k = bk + ck

K

∑
s=1

K

∑
t=1

x(δw (i−1)+s,δh(j+t))
k

Here, the number of input and output images are the same. Same remarks apply con-
cerning the size of output images size as for SpatialConvolution. Creating such a layer
is easily done by:

SpatialSubSampling(int n_input_planes, int width, int height,
int k_w=2, int d_x=2, int d_y=2);

When providing images to SpatialSubSampling with the forward() method, use the
same format as for the SpatialConvolution.

1As for TemporalConvolution where frames can be lost.

4 References

References

[1] K. J. Lang and G. E. Hinton. The development of the time-delay neural network ar-
chitecture for speech recognition. Technical Report CMU-CS-88-152, Carnegie-Mellon
University, 1988.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

