
Seven easy steps to install Torch on a Linux or Unix

machine (using xmake)

Ronan Collobert

August 11, 2004

1 What do I need ?

You must have:

• A Linux or Unix machine (a motherboard, an hard disk, a screen,a keyboard and a
processor could be interesting).

• A C++ compiler. You can take for example the GNU compiler1, but other compilers
should work.

• Python2. This is a script language needed for xmake.

2 Download the library an unpack archives

The library is available in one big archive. Just go in the download3 section of the
Torch4 website, and take the Unix/Linux archive. Unpack it: a Torch3 directory should
appear, with some directories inside (the sources of the core will be in the Torch3/core
directory...). The library is divided into several parts: the core, which is the foundation
of the library (it should be stable...) and some packages developped by any user.

3 xmake setup

The first time you install Torch , you will find in the root directory Torch3 a python
script called xmake. Move it into a directory which is available in your path variable
environment. By default, xmake supposes that python is in /usr/bin/python. If it is
not your case, change the first line of xmake. Test if xmake is working with the command
xmake help which gives a little help on xmake.

4 Set your compilation options

The library needs a file named <os>.cfg to compile, where <os> is the name of you
operating system, given by the command xmake os. This file must be in the Torch3
directory. There are some examples of this file in the Torch3/config directory.

1http://www.gnu.org/software/gcc
2http://www.python.org
3http://www.torch.ch/downloads.php
4http://www.torch.ch

http://www.gnu.org/software/gcc
http://www.python.org
http://www.torch.ch/downloads.php
http://www.torch.ch

2 4 Set your compilation options

Therefore, check the name of your OS with xmake os and copy an example of *.cfg from
the directory Torch3/config to Torch3/. For example, if you have a SunOs system, and
you’re using the CC workshop compiler, copy the file Torch3/config/CC.cfg in the file
Torch3/SunOS.cfg.
After you’ve copied this file, edit it. It should look like the following (if you are using the
GNU compiler file example).

Don’t touch this first line
[torch]

Need more verbosity ?
Uncomment this line if you want to see the full compiling command
called by xmake, for instance
#verbose = 1

Packages you want to use
For example if you want to use gradient machines and distributions, put
"packages = gradients distributions"
Don’t include packages which contain main programs (such as "examples")
Don’t include "core"
packages =

Magik key if you want several libraries
for the same platform
(It’s useful if you’re using two different compilers: a different file
for dependencies and for binaries will be generated for each magic_key)
#magic_key =

Compiler, linker and archiver
compiler = g++
linker = g++
#archiver = g++ -shared -o
archiver = ar -rus

Your librairies
(for example "-lm", but not needed on most systems...)
libraries =

Your includes
(for example -I/usr/local/special)
includes =

optimize mode
Comment one of these lines... "opt" is for optimized code,
and "dbg" for debug code (if you plan to use a debugger)
debug = opt
debug mode
#debug = dbg

Comment one of these lines... if you take "double" (and comment "float")
the "real" variables will be "double". Otherwise "float".
double version

3

#floating = double
float version
floating = float

Check now the flags for your compiler.
-DUSE_DOUBLE is used to define USE_DOUBLE in the code (for *_double flags).
-DDEBUG is used to define DEBUG in the code (for dbg_* flags)

Debug double mode
dbg_double = -g -Wall -DUSE_DOUBLE -DDEBUG

Debug float mode
dbg_float = -g -Wall -DDEBUG

Optimized double mode
opt_double = -Wall -O2 -ffast-math -DUSE_DOUBLE

Optimized float mode
opt_float = -Wall -O2 -ffast-math

5 Compile the library

That’s easy. Go in the Torch3 directory and do xmake. If everything goes ok, several
directories should be created: objs in which you’ll find all the object files, and libs in
which you’ll find the library.
You should’nt have any warning during the compilation... otherwise, send me an email,
if it’s related to the code of the library.
The following commands are available for xmake:

• xmake help : gives a little help on xmake.

• xmake os : gives the name of your operating system.

• xmake : redo the dependencies if necessary, and compile the whole library.

• xmake clean : remove the dependency files, the objects and the library for the
current system.

• xmake distclean : remove the dependency files, the objects and the library for all
the systems.

• xmake depend : force the (re-)creation of the dependency files. This is needed only
in the case you add a include file (something like #include "MyNewClass.h") in
an existing code file. Note that xmake autodetects new files: you do not need to
perform this command after the creation of a new file.

6 Compile your program

Create a directory in Torch3/. Go in this directory, edit your program. Then, if the
name of you program is foo.cc, just do xmake foo or xmake foo.cc. A subdirectory
will appear (with a name corresponding to your compilation flags and your operating
system) with the program foo...

4 7 Notes on xmake

7 Notes on xmake

• If you want to compile a whole directory of main program, just do xmake *.cc.

• If you set the options in the .cfg file to the “optimized” mode, and that you want
to compile in debug mode, do xmake -dbg.

• In a similar way, if the debug mode is the default, you can compile optimized code
with xmake -opt.

• To force the compilation of main programs in optimized or debug mode, you can
also do something like xmake -opt *.cc or xmake -dbg *.cc.

• You can compile the library from anywhere in Torch3 (in any subdirectory) by just
a xmake command.

	What do I need ?
	Download the library an unpack archives
	xmake setup
	Set your compilation options
	Compile the library
	Compile your program
	Notes on xmake

