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CHAPTER 1 Introduction

Torch is a machine learning library, written in C++, which is under a BSD license.
When I say “C++”, it’s in fact C with just the concept of classes found in C++. There-
fore, to use Torch , you just need to know C and the bases of C++. With the power of
C++ classes Torch has a modular design, and with the power of C1 the core of Torch
is efficient.

The ultimate objective is to contain all of the state-of-the-art machine learning algo-
rithms, for both static and dynamic problems. Currently it contains all sorts of artificial
neural networks (including convolutional network and time-delay neural networks), sup-
port vector machines for regression and classification, Gaussian mixture models, hidden
Markov models, Kmeans, K nearest neighbors and Parzen windows. It can also be used to
train a connected word speech recognizer. And last but not least, bagging and adaboost
are ready to use.

In this tutorial, I won’t explain you how to install Torch or how to compile your
program: for that, please have a look to the web site2. Here I’ll try to introduce the
main concepts of Torch , and I hope I’ll demonstrate that it’s easy to use. Note that this
document is not a reference manual: it’s just a tutorial to start and to have “the Torch
feeling”.

1and those of the coders
2http://www.torch.ch
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CHAPTER 2 Coding Guidelines

2.1 The core

The library is divided into several subdirectories. The “foundation” part of Torch is in
core. You should never change anything in this directory. If you find a bug, just send
me an email. Each main class of algorithm (or concept) is represented by a directory
(also called “package”). If you want to do your own algorithm, just create a new package
(That is a new directory).

2.2 You said C++ ?

I hate C++. Too much complicated. At the beginning I was thinking about writing the
library in Objective C... unfortunately, only few people are using this language. Here
are the C++ keywords that you’re allowed to use in Torch :

• namespace (because Torch is embedded in the Torch namespace).

• class

• virtual

• public

• all C keywords

• const, but only if compilers give a warning when you don’t use it.

• new for Object classes. If it’s for an array of standard types like int, float... use
Allocator::alloc().

In Torch, every class member are public. Sometimes, when you have very obscure
and ugly variables in your code, put them in private, but that is the only case which is
allowed.

I don’t want to see:

• string... no, no and no, please use char*.

• cin cout, and C++ streams: no, use message(), warning(), error(), print()
and XFile classes.
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• Templates.

• STL library.

• Multiple inheritance.

• Operator overload.

• References: use pointers.

As you can see, in Torch we use C++ only for the object concept, and the heavy
STL library is banned. The rest of your code should be almost like C.

2.3 Naming conventions

Easy:

• MyClassName

• myMethodName()

• my_variable_name

• myGlobalFunction()

• MY_CONSTANT (for #define constants or other)

Note that each class should be divided into two files: one include file (.h, containing
the class layout) and one source file (.cc, containing the implementation). In the include
file, you should provide some documentation, with the DOC++1 format for comments.
Moreover, the include file for the class StupidClass should look like:

#ifndef STUPID_CLASS_INC
#define STUPID_CLASS_INC

/* Your includes which are necessary for this include file here.
Other includes should be in the implementation file.

*/

namespace Torch {

/* Your definitions here. */

}
#endif

1See http://docpp.sourceforge.net/



CHAPTER 3 Basic Types And Functions

Torch has several types and classes that you should use in your code. You will find
these types and classes everywhere in Torch so you should never forget them.

3.1 The numeric real type

Instead of using double or float, you should use the real type. real is defined by the
user at compile time, and could be either float or double. Remember this fact, because
all your code have to work with both type. For example, some problem could arise if you
have to use the fscanf function: you have to use the %lf string if you’re using double
and %f string for float mode. To solve this kind of exceptionnal trouble, you can use
the USE_DOUBLE variable which is defined if and only if real corresponds to double.

3.2 Matrices and vectors

Torch is provided with a matrix package. This package defines the Mat type for real
matrices and the Vec type for real vectors. However you should use this types only in
few cases, that is, only if you need complex operations on matrices, such as computing
the eigenvalues or the inverse of a matrix using the functions of the matrix package1.
Therefore, in Torch a vector should be a pointer (such as real *vector) and a matrix
should be a double pointer (such as real **matrix). You have been warned2...

3.3 Writing message to the user

As explained in the coding guidelines, you shouldn’t use the C++ streams to write mes-
sages to the user. In fact, you shouldn’t use the standard function printf neither. Please,
use the functions:

• message: to print a simple message, followed by a carriage return.

• warning: to print a warning, followed by a carriage return.

1A lot of functions are available in the matrix package, but I’ll not talk about them here.
2Remember that an objective of Torch is to be efficient. So I prefer to see C code which looks like

assembly, instead of complex classes coming from a fantasm of a coder and which are only “nice” to see.
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• error: to print a fatal error. The program will end with a call to this function.

• print: exactly like printf.

All these functions take the same arguments as printf. Note that these functions have
been created with the perspective that one day, we3 could want to change the interface
of Torch . (For example, to provide a graphical interface).

3.4 XFile : the Torch streams

When you need to use streams, you should use the XFile class. An XFile has similar
methods than system functions associated to the FILE type:

• read() reads raw data.

• write() writes raw data.

• eof() checks if we are at the end of the stream.

• flushes() flush buffers of the stream.

• seek() seeks to a specified position in the stream.

• tell() tells where we are in the stream.

• rewind() seeks to the beginning of the file.

• printf() prints some text. It has a undetermined number of arguments.

• scanf() reads some text. Note that it can read only one variable at each call.

• gets() gets a line.

Two additional methods which check what we read or write are provided:

• taggedWrite(void *, int, int , const char *tag): as write() but adds in
the stream the given tag, and the size of what we are writing.

• taggedRead(void *, int, int, const char *tag): as read(), but checks if
the given tag is in the stream, and compares the given size to the one stored
in the stream with taggedWrite.

Currently three kinds of XFile are provided: NullXFile, which does nothing,
DiskXFile which corresponds to system FILE, and which can handle a file on disk.
And MemoryXFile, which is a read-write file in memory; this one automatically grows in
memory when writing (with a buffered write, to avoid reallocating for one byte).

DiskXFile can handle little endian and big endian encoding. For example, you could
force all DiskXFile to save and load in little endian mode. To know how your pro-
cessor encodes data, two static methods are available: isLittleEndianProcessor()
and isBigEndianProcessor(). To force all DiskXFile to use a specific encoding, use

3That is, the Torch team.
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setLittleEndianMode() and setBigEndianMode(). To load and save using the native
mode of the processor, (which is the default), use setNativeMode(). And to test if you
are in the native mode, use isNativeMode(). All methods are static, which means that
all DiskXFile will use the same mode. Simple example of use:

int main()
{
DiskXFile::setLittleEndianMode();

/* Do what you want here. All data will be loaded and saved using
the little endian mode. If your machine uses big-endian, all
data will be converted when loading and saving using a DiskXFile.

*/

return 0;
}

MemoryXFile uses a list to store its data. And it has a supplementary method:
concat(). When you call that, you have the garantee that the memory will be concatened
(it can be expensive!) in one node of the list. Check the include file for details.

Example:

// Create a file on disk named "almost_empty" in write mode.
DiskXFile f_on_disk("almost_empty", "w");

// Create a file in memory (in read write mode)
MemoryXFile f_in_memory;

// Write in binary an array of int
f_in_memory.write(array, sizeof(int), size_of_the_array);

// Write text
f_in_memory.printf("array[0] = %d, array[1] = %d\n", array[0], array[1]);

// Be sure that the memory in only in one node
f_in_memory.concat()

// Ugly write of contents from f_in_memory into f_on_disk
f_on_disk.write(f_in_memory->memory->mem, 1, f_in_memory->size);

3.5 Basic classes: Object and Allocator

All classes in Torch must be children (directly or indirectly) of the class Object. This
class provides three interesting things: input-output methods for the object, easy option
management, and (most importantly) easy memory management.
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3.5.1 Input-output methods

Four methods are defined in Object:

• loadXFile(XFile *) which loads the object from an XFile stream.

• saveXFile(XFile *) which saves the object into an XFile stream.

• load(char *) which loads the object from a file on disk with the given name.

• save(char *) which saves the object into a file on disk with the given name.

All these methods do nothing by default. Note that these methods don’t save or modify
the structure of the object. It’s just for loading or saving the contents of the object: the
structure must be handled by the user with the constructor of each object.

3.5.2 Option management

An option from an Object point-of-view is a variable which can be set by the user at
any time after the construction of the object. This means that an option should not be
related to the structure of the object. There are four types of options which are often used:
option for an int, for a real, for a bool, and for a pointer to an Object. The idea is quite
simple: in the constructor of the object, the coder uses one of the following methods:

addIOption(const char *name, int *ptr, int init_value,
const char *help="");

addROption(const char *name, real *ptr, real init_value,
const char *help="");

addBOption(const char *name, bool *ptr, bool init_value,
const char *help="");

addOOption(const char *name, Object **ptr, Object *init_value,
const char *help="");

(’I’ for Int, ’R’ for Real, ’B’ for Boolean and ’O’ for Object), and then the user (in a
main program) could possibly call one of the corresponding methods:

setIOption(const char *name, int option);
setROption(const char *name, real option);
setBOption(const char *name, bool option);
setOOption(const char *name, Object *option);

Example: in Linear.cc there is a line:

addROption("weight decay", &weight_decay, 0, "weight decay");

Therefore, to create a Linear layer with a weight-decay equal to 0.001, I just have to
write:

Linear linear;
linear.setROption("weight decay", 0.001);

and that’s all. Moreover, I can call setROption() at any time to change the weight-decay.
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3.5.3 Memory management

In Torch all memory allocated by a given object should be freed by the same object.
In fact, the Object class contains one special field: Allocator *allocator. This object
is created in the constructor of Object and destroyed in its destructor. An Allocator
has several methods to allocate memory, and this memory will be automatically freed at
the destruction. This means that you have to use allocator to allocate memory in an
object, and you don’t care of the destruction of the memory.

The most interesting methods in Allocator are alloc(), realloc(), which corre-
spond to the system functions malloc() and realloc(). To create a class which derivates
from Object, you have to use the overloaded operator new: new(allocator) YourOb-
ject creates a new YourObject and tells that YourObject will be destroyed when
allocator will be destroyed. Note that this new operator couldn’t apply to C++ types
like int, real and bool: you really have to use the alloc() method for them.

If you want to force the destruction of an allocated memory (or of one object) before
the destruction of the allocator, use the method free(). If you want that your allocator
handles memory that is already allocated and don’t belong to it, use retain(): the
memory will be freed at the destruction. If you want to “steal” the memory from another
allocator, use steal(). And if you want to stop handling some memory, use release():
it means that the allocator won’t free the memory at the destruction. It just stops
handling it.

Example:

int main()
{
// Creation of allocators
Allocator *a1 = new Allocator;
Allocator *a2 = new Allocator;

// Allocation of memory with a1
int *array_1 = (int *)a1->alloc(sizeof(int)*10);
int *array_2 = (int *)a1->alloc(sizeof(int)*10);
int *array_3 = (int *)a1->alloc(sizeof(int)*10);
int *array_4 = (int *)a1->alloc(sizeof(int)*10);

// Create stupid objects with a1
SupidObject *stupid_1 = new(a1) StupidObject;
SupidObject *stupid_2 = new(a1) StupidObject;

// Allocation of an array in a stupid manner
int *array_5 = (int *)malloc(sizeof(int)*10);

// a1 takes the control on memory in array_5
a1->retain(array_5);

// a2 steals memory in array_2 which belongs to a1
a2->steal(array_2, a1);

// a1 doesn’t care anymore about memory in array_3
a1->release(array_3);
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// Force a1 to free the memory in array_4
a1->free(array_4);

// Force a1 to destroy stupid_a2 object
a1->free(stupid_a2);

// a1 automatically frees array_1 and array_5 and destroys stupid_1.
delete a1;

// a2 automatically frees array_2
delete a2;

// Memory leak: array_3 is steal reachable here!
return 0;

}

In fact a main code will usually look like:

int main()
{
/* We usually prefer to allocate an allocator dynamically

because we prefer to have "new(allocator) StupidObject"
instead of "new(&allocator) StupidObject".

*/
Allocator *allocator = new Allocator;

/*
Allocate memory here using allocator;

*/

// Free all memory and destroy all objects
delete allocator;
return 0;

}

Example in the code of a class:

StupidClass::StupidClass()
{
// Allocate memory using allocator defined in Object
int *array = (int *)allocator->alloc(sizeof(int)*10);

}

StupidClass::~StupidClass()
{
// array is automaticaly freed here.

}

Note that sometimes, (for hardcore coders) you really need to allocate memory with-
out handling it by an allocator. For that, two static methods are available in Allocator:
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sysAlloc() and sysRealloc(). These methods correspond to malloc() and realloc()
system functions, except that they print an error if there is no more memory available.
Memory allocated with these functions could then be handled by an allocator with the
method retain(), or freed by the system free() function.

3.6 Random functions

In standard C, the rand function is available. However, in Torch you should use only
random functions which are described in Random.h. Random is a class with only static
methods providing several kinds of random generators. Before using one of these methods,
you can call the manualSeed() method which initializes the random generator with a
given value. It could be interesting if you want to do several times exactly the same
experiment. If you don’t do that, a call to the seed() method will be automatically
done, which initializes the random number generator with the CPU time. In any case,
to get the value that has been used to initialize the random generator, you can use
getInitialSeed().

A lot of random functions are available: check the include file for details!

• random() generates a uniform 32 bits integer.

• uniform() generates a uniform random number on [0,1[.

• boundedUniform() generates a uniform random number on [a, b[ (b > a).

• normal() generates a random number from a normal distribution.

• exponential() generates a random number from an exponential distribution. The
density is p(x) = λexp(−λx), where λ is a positive number.

• cauchy() returns a random number from a Cauchy distribution. The Cauchy
density is p(x) = σ

π(σ2+(x−µ)2) .

• logNormal() generates a random number from a log-normal distribution.

• geometric() generates a random number from a geometric distribution. It returns
an integer i, where p(i) = (1− p)pi−1, where p must satisfy 0 < p < 1.

• bernouilli() returns true with probability p and false with probability 1− p
(p > 0).

• getShuffledIndices() returns an array with uniformly shuffled indices.

• shuffle() shuffles uniformly a given array.

3.7 Measuring time

When you need to measure CPU time, you can use the Timer class. It can be stopped,
resumed, reset, and of course you can get the total elapsed time (a real in seconds) at
any time! Example:
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int main()
{
// Create a timer. The timer starts to count now!
Timer timer;

/* Do some job1 here */

// Print the elapsed time for job1
message("job1: %g CPU seconds", timer.getTime());

// Stop the timer
timer.stop();

/* Do a stupid job here */

// Resume the timer
timer.resume();

/* Do some job2 here */

// Print the elapsed time for job1+job2
message("job1+job2: %g CPU seconds", timer.getTime());

// Reset the timer. As it was not stopped before, the timer
// counts the time starting from now.
timer.reset();

/* Do some job3 here */

// Print the elapsed time for job3
message("job3: %g CPU seconds", timer.getTime());

// Stop the timer.
timer.stop();

// Reset the timer. As it was stopped before, the timer
// doesn’t count the time anymore.
timer.reset();

/* Do some job4 here */

// Print "0" we forgot to resume the timer.
message("job4: %g CPU seconds", timer.getTime());

return 0;
}
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3.8 Taking arguments from the command-line

Who said that taking arguments from the command-line was boring ? In Torch a useful
easy-to-use class is provided, and you won’t be able to do without it in the near future.
Its name is CmdLine. This class does the distinction between:

• arguments which must be present in the command-line.

• options which could be present in the command-line.

You should never forget that:

• Arguments must be present in the order specified by the pearson who designed the
program.

• Options can be completely mixed, but before arguments.

• Options are introduced by a keyword specified by the coder. For example, you
could have an option -age which asks for an integer4. To set this this option in the
command line, the user will write for example -age 42.

• Arguments are not introduced by a keyword. That’s why they must be in the right
order!

Several functions are available to construct the command-line. Some of them only
display text when the user needs help. Others add an option or an argument. The text
that will be displayed for help depends on the call order of these functions. The methods
are:

• addText(const char *text) : adds a text line in the help message.

• info(const char *text) : adds a text at the beginning of the help. This method
should be called only once.

• Methods that respectively add an int, bool, real and char* option:

◦ addICmdOption(const char *name, int *ptr, int init-
value, const char *help="")

◦ addBCmdOption(const char *name, bool *ptr, bool init-
value, const char *help="")

◦ addRCmdOption(const char *name, real *ptr, real init-
value, const char *help="")

◦ addSCmdOption(const char *name, char **ptr, const char *init-
value, const char *help="")

After a call to one of these methods, the option name will be added. It means that
when you read the command-line, if the option name is present, the associated value
will be put in ptr. Otherwise initvalue will be put in ptr. Moreover, if the help
is called, the help message will be displayed. Note that the -h, -help and --help
options are reserved. If the user puts one of these options in the command-line, the
help will be displayed.

4The captain’s age
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• Methods that respectively add an int, bool, real and char* argument:

◦ addICmdArg(const char *name, int *ptr, const char *help="")

◦ addBCmdArg(const char *name, bool *ptr, const char *help="")

◦ addRCmdArg(const char *name, real *ptr, const char *help="")

◦ addSCmdArg(const char *name, char **ptr, const char *help="")

The effect is similar to the one obtained with option adding methods. Of course,
as the arguments must be present, there is no default value.

• read(int argc, char **argv) : read the command-line. Call this method after
adding options and arguments that you need, with the help of the previous methods.

Here is an example... if I write in my code (of a program named toy):

const char *help = "It’s a stupid toy.";
char *file_in, *file_out;
int n_inputs, max_load;
CmdLine cmd;

cmd.info(help);

cmd.addText("\nArguments:");
cmd.addSCmdArg("file in", &file_in, "the file in");
cmd.addSCmdArg("file out", &file_out, "the file out");
cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");

cmd.addText("\nOptions:");
cmd.addICmdOption("-load", &max_load, -1, "maximum number of examples

to load");

cmd.read(argc, argv);

...the following text will be displayed when the program is lauched without argument,
or if I put (for example) a -h in the command-line...

It’s a stupid toy.

usage: ./toy [options] <file in> <file out> <n_inputs>

Arguments:
<file in> -> the file in (<string>)
<file out> -> the file out (<string>)
<n_inputs> -> input dimension of the data (<int>)

Options:
-load <int> -> maximum number of examples to load [-1]

...and a valid command-line could be:

./toy -load 666 file_in file_out 42



CHAPTER 4 Main Concepts Of Torch

There are only four important concepts in Torch . Each of them are implemented in
a generic class. And almost all classes of Torch are subclasses of one of them. Here they
are1:

• DataSet: this class handles the data. Subclasses could be for static or dynamic
data, for data that can fit in memory or on disk, etc...

• Machine: a black-box that, given an (optional) input and some (optional) parame-
ters, returns an output. It could be for instance a neural network, or a mixture of
gaussians.

• Trainer: this class is able to train and test a given machine over a given dataset.

• Measurer: when given to a trainer, it prints in different files the measures of inter-
est. It could be for example the classification error, or the mean-squared error.

The general idea of Torch is very simple: first, the DataSet produces one “training
example”...

This training example is given to a machine which computes an output...

1Strange pictures are copyrighted c©Nicolas Gilardi 2001. All rights reserved.
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...and with that a trainer tries to tune the machine.

As you surely begin to understand2, for a given machine, you need a special trainer.
Usually when you create a new class of machine learning machine, you have to write the
corresponding trainer. Examples:

• there are many “gradient machines” (GradientMachine) (including a multi-
layer perceptron) which can be trained using a “gradient machine trainer”
(StochasticTrainer).

• a machine such as a support vector machine (SVMClassification or
SVMRegression) can be trained with a trainer which is able to solve a constrained
quadratic problem: QCTrainer.

• distribution machines (Distribution) are usually trained using an Expectation
Maximization algorithm which is implemented in Torch with the EMTrainer.

We will now have a look in more details on the four Torch concepts.

2I hope.
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5.1 Sequence

Sequences are used everywhere in Torch . Almost all classes handle sequences. A se-
quence is a set of real vectors which have the same size. The real vectors are in fact
called frames. Sequences have a temporal meaning: each frame measures something at
a given time. A sequence is defined like this:

class Sequence
{
real **frames;
int n_frames;
int frame_size;

/* methods on sequences */

};

Thus, there is n_frames in a sequence, each are available in frames[i], which is a real
vector of size frame_size.

There is many ways for creating a sequence. The common way is to use the constructor

Sequence(int n_frames_, int frame_size_);

which creates a sequence of n_frames_ of size frame_size_. Values in the frames are in
an uninitialized state after this call. A zero number of frames is allowed, but the frame
size must be positive.

The second way is to use

Sequence(real **frames_, int n_frames_, int frame_size_);

Here you specify the array of frames. No copy will be done.

Hardcore coders can use the empty constructor Sequence(). But be careful, read the
include file in details before, and even the implementation file, in order not to forget any
field to fill.

You can do a lot of things on sequences.
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• The most important is resizing:

resize(int n_frames_, bool allocate_new_frames=true);

Usually, don’t care about the second argument and forget it. The sequence will be
resized to n_frames_ in an efficient manner: it never forgets the memory allocated
for the maximum number of frames you have specified. Hardcore coders may use
allocate_new_frames (carefully!): if true, the frames won’t be allocated if the
new number of frames if larger than the previous one; you then have to fill frames
by yourself.

• You can add frames using addFrame(real *frame, bool do_copy=false), or
even a whole sequence using add(Sequence *sequence, bool do_copy=false).

• You can do copy from another sequence using copy(Sequence *from), or copy
from (or to) a real vector using copyFrom(real *vec) and copyTo(real *vec).

• It’s also possible to “clone” a sequence: a full copy of the sequence will be returned.
This is used in very rare cases, when a class needs to keep in memory sequences
which could derivate from Sequence, and thus which could have a different struc-
ture. Don’t care, or if you really need it, check the include file.

5.2 DataSet

5.2.1 Definition

A DataSet is an interface to provide a set of examples1. An example from a Torch point-
of-view is the association of an input sequence to a target sequence. The key method in
a DataSet is setExample(int t) which sets the inputs and targets field to the inputs
and targets of the example indexed by t. There is n_examples examples in a DataSet.
Thus, the novice programmer can see a DataSet as the following:

class DataSet
{
// Number of examples
int n_examples;

// Inputs and targets of the setted example
Sequence *inputs, *targets;

// Set the example t (0 <= t < n_examples)
void setExample(int t);

};

5.2.2 Dealing with subsets

DataSet allows you to deal with subsets. For that, two methods are provided:

1Useful in machine learning...



5.2. DataSet 23

void pushSubset(int *subset_, int n_examples_);
void popSubset();

pushSubset() tells to only consider the n_examples_ with indices given in subset_.
subset_[i] must be >= 0 and < n_examples. n_examples will then be updated to
n_examples_, and all calls to setExample(t) will set the tth selected example. You can
do several successive calls to pushSubset(): it will do a subset of the previous subset of
examples.

After a pushSubset() call, when you have finished working on your subset, you have
to call popSubset() which puts the DataSet in its previous state.

If you did a pushSubset(), a flag select_examples will be set to true. At any time
(even if there is no pushed subset), there is an array of indices int *selected_examples
which contains the real index of each selected examples. (That is, the index that you
would have to give to setExample() if no subset was pushed). Moreover, the current
real index of the set example is given by real_current_example_index.

5.2.3 Note on the “existence” of an example

After a setExample(), you have the assurance that pointers given in inputs and targets
are valid only until the next setExample():

data->setExample(0);
inputs_0 = data->inputs;
targets_0 = data->targets;
data->setExample(1);

/* You cannot play with inputs_0 and targets_0 here.
*/

Indeed, some classes which derive from Dataset are working on disk, and thus don’t keep
examples in memory if not specified.

To force an example to be valid after the next setExample(), you can use the
pushExample() (and popExample() to forget it) methods. If several examples need
to be valid in the same time, you can do several pushExample(). They will be valid until
the setExample() (or popExample()) which follows their corresponding popExample().
Example:

data->setExample(0);
inputs_0 = data->inputs;
targets_0 = data->targets;
data->pushExample();

data->setExample(1);
inputs_1 = data->inputs;
targets_1 = data->targets;
data->pushExample();
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data->setExample(2);

/* inputs_1, targets_1, inputs_0 and targets_0 still valid here.
inputs and targets in data are those of the example 2.

*/

data->popExample();

/* inputs_1, targets_1, inputs_0 and targets_0 still valid here.
data->inputs contains inputs_1 and data->targets contains targets_1.

*/

data->popExample();

/* inputs_1 and targets_1 are not valid anymore.
inputs_0, targets_0 still valid here.
data->inputs contains inputs_0 and data->targets contains targets_0.

*/

data->setExample(3);

/* inputs_1, targets_1, inputs_0 and targets_0 are not valid anymore.
inputs and targets in data are those of the example 3.

*/

5.2.4 Creating a new DataSet

To create a new DataSet which derives from this class, you just have to define
setRealExample() which sets inputs and targets given the real index of the example,
and to define pushExample() and popExample(). Several values must be initialized in
the DataSet: to achieve that, call the init() method in your constructor.

5.3 IOSequence

Before continuing presenting DataSet, I need to present the IOSequence class, on which
most DataSets are based. IOSequence provides an ensemble of sequences. All these
sequences have the same frame size, but could have different number of frames. The
class is clearly explained in the include file:

class IOSequence : public Object
{
public:
// Number of sequences in the interface.
int n_sequences;

// Frame size of each sequence.
int frame_size;

//
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IOSequence();

// Returns the number of frames of the sequence indexed by #t#.
virtual int getNumberOfFrames(int t) = 0;

/** Write the sequence #t# in #sequence#.
Sequence must have the size returned by #getNumberOfFrames()#.

*/
virtual void getSequence(int t, Sequence *sequence) = 0;

// Returns the total number of frames in the IO.
virtual int getTotalNumberOfFrames() = 0;

virtual ~IOSequence();
};

Thus, to get the sequence indexed by t you need three steps:

// 1) Get the number of frames of the sequence
int n_frames = io_sequence->getNumberOfFrames(t);

// 2) Allocate a sequence
Sequence sequence(n_frames, io_sequence->frame_size);

// 3) Get the sequence
io_sequence->getSequence(t, &sequence);

It’s pretty easy to define a new IOSequence class: you just have to define pure virtual
methods, and to set n_sequences and frame_size in the constructor.

Several IOSequence already exist. In the following paragraphs you’ll find a short
description of them.

5.3.1 IOAscii

It reads Ascii data on the disk. The file data must have the following format:

n m
frame 1 of the sequence (m real)
...
frame n of the sequence (m real)

where m and n are integers corresponding respectively to the number of frames and the
frame size of the sequence. The constructor is:

IOAscii(const char *filename_, bool one_file_is_one_sequence_=false,
int max_load_=-1);

If one_file_is_one_sequence_ is false, it means that a row of the file will be viewed as
a sequence with one frame in the IOAscii. Thus, it will contain n sequences. Otherwise,
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the IOAscii will contain only one sequence with n frames. In any cases, max_load_
specifies how many sequences to load. Note that this IO must be accessed in a sequential
manner. Moreover, the first access opens the file, and the access of the last sequence
closes the file.

It’s possible to save in a specified stream a sequence in Ascii format using the addi-
tionnal static method:

static void saveSequence(XFile *file, Sequence *sequence);

5.3.2 IOBin

The format is the same as IOAscii, but in binary. Of course there is no space and
carriage return! The constructor is:

IOBin(const char *filename_, bool one_file_is_one_sequence_=false,
int max_load_=-1, bool is_sequential=true);

The functionalities are exactly the same if is_sequential is true. If this flag is false, the
file can be accessed in a random manner. Note however that the file will be opened and
closed at each access and that a “seek” will be applied: this could be slow, depending on
you system and on the file size.

5.3.3 IOMulti

It takes an array of IOSequence in the constructor and works as if there was only one
ensemble of sequences: the number of sequences contained in IOMulti will be the total
number of sequences contained in all IOSequence of the array. All given IOSequence
must have sequences with the same frame size.

5.3.4 IOSub

It takes an IOSequence in the constructor and shows only a subset of adjacent columns
in each frame of each sequence when calling getSequence().

5.4 MemoryDataSet and DiskDataSet

Currently, there are two major branches of DataSet in Torch : DataSet which are fully
loaded in memory (MemoryDataSet) and DataSet where only one example is loaded in
memory at each setExample() and where the rest stays on disk (DiskDataSet). Both of
these DataSet are designed to be used with the IOSequence class2. The idea is quite sim-
ple: there is one IOSequence which provides sequences for inputs, and another for targets.
MemoryDataSet reads all examples in the constructor through the IOSequence, whereas
DiskDataSet reads one example at each setExample() by one call to IOSequence.

2In fact, it’s possible to create a MemoryDataSet without them, but it’s not recommended.
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Creating a new DataSet from a MemoryDataSet or a DiskDataSet is effortless: you
just have to give two IOSequence (one for inputs and one for targets) to the init()
method provided in both classes. This method should be called in the constructor of
your sub-class, and does all the job for you. Note that you can give a NULL pointer if
you don’t have any input (or any target).

5.5 MatDataSet and DiskMatDataSet

The standard DataSet file format is handled by MatDataSet for MemoryDataSet and
DiskMatDataSet for DiskDataSet. They have both the same functionalities. Thus, I
will focus on MatDataSet here. The first constructor is:

MatDataSet(const char *filename, int n_inputs_, int n_targets_,
bool one_file_is_one_sequence=false, int max_load=-1,

bool binary_mode=false);

The data will be read from filename in an IOAscii format (or IOBin if binary_mode is
true). Each line in the file is divided into two parts: the first n_inputs_ correspond to
an input frame, and the rest of the line is a target frame. If one_file_is_one_sequence
is false, the file is viewed as n sequences with one frame of size n_inputs_ for inputs and
n_targets_ for targets. (Where n is the number of lines in the file). Otherwise it will
be considered as one sequence with n frames. If max_load is positive, it will load only
max_load sequences3.

A similar constructor is available:

MatDataSet(const char **filenames, int n_files_, int n_inputs_,
int n_targets_, bool one_file_is_one_sequence=false,

int max_load=-1, bool binary_mode=false);

It has the same behavior as the previous constructor, but the data is divided into
n_files_ given in the array filenames.

When you have one file per sequence for inputs, and one file per sequence for targets,
it’s possible to use the constructor

MatDataSet(const char **input_filenames,
const char **target_filenames,
int n_files_, int max_load=-1, bool binary_mode=false);

Once again, max_load specifies the number of input and target sequences to load. If
binary_mode is false, the files must be in the IOAscii format (one row is one frame),
otherwise they must be in the IOBin format.

3Thus, it has a meaning only when one_file_is_one_sequence is false.
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5.6 Pre-processing

It is possible to do pre-processing over sequences of a DataSet. Note that this pre-
processing must respect the structure of the sequences: it can just modify the content.
A PreProcessing class contains two methods to be defined if you need a new kind of
pre-processing:

// Given an input sequence, do the pre-processing.
void preProcessInputs(Sequence *inputs);

// Given a target sequence, do the pre-processing.
void preProcessTargets(Sequence *targets);

These methods modify the content of a given input or target sequence as you want. To
ask a DataSet to perform a given pre-processing, just call the following method:

void preProcess(PreProcessing *pre_processing);

Note that for a MemoryDataSet, the pre-processing will be done immediatly after a call
of this method, for all sequences. For a DiskDataSet, the pre-processing will be done
“on-the-fly” after each call of setExample().

Currently, only one class of pre-processing is provided: MeanVarNorm.

MeanVarNorm(DataSet *data, bool norm_inputs=true,
bool norm_targets=false);

It takes a DataSet in the constructor, and normalizes all the sequences contained in this
DataSet in a way that the variance4 of the ensemble of all frames is 1 for all frame
columns, and the mean is 0. In fact, the computation of the normalization is done in the
constructor, and the the normalization itself is done when calling preProcessInputs()
or preProcessTargets(). By default, it normalizes only inputs. Here is an example:

// Create a data set
MatDataSet data(file, n_inputs, n_targets);

// Computes means and standard deviations
MeanVarNorm mv_norm(&data);

// Normalizes the data set
data.preProcess(&mv_norm);

5.7 ClassFormatDataSet

One common problem when you are doing classification in machine learning, is that the
class encoding format usually depends on the learning algorithm, and you don’t want

4We divide by the standard deviation.
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to have several versions of your data set on the disk. ClassFormatDatSet solves this
problem: it takes another DataSet, and converts the targets according to a “translation”
array.

The targets in the given array must have the following format: it is sequences with
one frame of size one. The values that they contain must be 0 for the first class, 1 for
the second class, 2 for the third class, and so on.

Two constructors are available to create such a DataSet:

• ClassFormatDataSet(DataSet *data, Sequence *class_labels) where you
provide the encoding format of each class through class_labels. The class i
will be view as class_labels->frames[i].

• ClassFormatDataSet(DataSet *data, int n_classes=-1) where it is assumed
that you want the “one-hot format”. The number of classes is specified with
n_classes, if this one is positive. Otherwise, the number of classes is guessed
by looking at the maximum target value in the given DataSet.
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CHAPTER 6 Rage Against The Machine

A machine is a simple class which contains Sequence *outputs, and a method
forward(Sequence *inputs) which updates outputs given inputs.

It contains also two other methods:

• setDataSet(DataSet *data) which is called before training. Thus, if your ma-
chine depends on the training set, and you need to do something on its structure
knowing this training set, do it in this method.

• reset(): if it makes sense that your machine could be set in a “random” mode, do
it here. This method will be called for example when doing cross-validation.

I’ll present now the two main classes of machines which are implemented in the pack-
ages gradients and kernels of Torch : GradientMachine and SVM. Of course other
machines are available in Torch packages, but check the documentation of each package
if you want to know more.

6.1 Gradient Machines

6.1.1 Introduction

Gradient machines are machines which could be trained with a gradient descent algo-
rithm. To achieve that, they contain several supplementary fields

/* Contains parameters of the machine
Check include files to know the structure of params.

*/
Parameters *params;

// Contains the derivative of the machine with respect to the parameters
Parameters *der_params;

// Contains the derivatives of the machine with respect to the inputs
Sequence *beta;

Then, a method backward(Sequence *inputs, Sequence *alpha) is available, which
updates der_params and beta, given the inputs and alpha which is a derivative
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that comes from subsequent machines and criterions. Thus beta is valid only after a
backward() and has the same structure as the given inputs (same number of frames
and same frame size). And the given alpha has also the same structure as outputs.
Note that you have to accumulate the derivatives with respect to the parameters, and
not accumulate the derivatives with respect to the inputs of the machine. This is because
several machines could share the same parameters. (It’s the trainer which initializes the
derivatives with respect to the parameters to zero).

To simplify the life of the coder, several fields have been added:

• n_inputs and n_outputs which are the size of input frames and output frames.
These fields should be fixed in the constructor.

• As many gradient machines don’t use the time aspect of a sequence, two methods
have been added:

frameForward(int t, real *f_inputs, real *f_outputs);
frameBackward(int t, real *f_inputs, real *beta_,

real *f_outputs, real *alpha_);

These methods are called for each frame by the default forward() and backward()
methods. The first one writes in f_outputs the outputs given the frame f_inputs.
If needed, the index of the frame is given with t. The second one updates beta_,
the derivative with respect to the input frame f_inputs. It should also update
the derivatives of the parameters contained in der_params. When creating a new
gradient machine, if your machine don’t use the time aspect of sequence, you just
have to overload these two methods. Otherwise, you should overload forward()
and backward(). Note that frameForward() and frameBackward() should never
be called outside the class, because there is no warranty that the coder used them!

• loadXFile() and saveXFile() which load and save the parameters.

And last, you should take into account the flag partial_backprop when writing a
method backward() or frameBackward(). Indeed, if it’s false, the machine shouldn’t
compute the derivatives beta with respect to the inputs. This flag if set by the method
setPartialBackprop(). You shouldn’t have to modify this method.

6.1.2 ConnectedMachine

There exist a lot of small GradientMachine. Among them you will find Linear, Tanh,
Sigmoid, Exp... but the most important one is ConnectedMachine. It allows you to
plug all other machines as you want, to obtain what you want. Here are the important
methods it contains:

/* Add a Full Connected Layer. The #machine# is fully connected
to the previous layer. If necessary, a layer is added before
adding the machine.

*/
void addFCL(GradientMachine *machine);

// Add a #machine# on the current layer
void addMachine(GradientMachine *machine);
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/* Connect the last added machine on #machine#.
Note that #machine# \emph{must} be in a previous layer.

*/
void connectOn(GradientMachine *machine);

// Add a layer (you don’t have to call that for the first layer)
void addLayer();

Example: how could I create a multi-layered perceptron with tanh non-linear hidden
units and sigmoid outputs ? Here it is:

// Creates the layer necessary to the MLP
Linear layer1(n_inputs, n_hidden_units);
Tanh layer2(n_hidden_units);
Linear layer3(n_hidden_units, n_outputs);
Sigmoid layer4(n_outputs);

// Creates the MLP itself
ConnectedMachine mlp;
mlp.addFCL(&layer1);
mlp.addFCL(&layer2);
mlp.addFCL(&layer3);
mlp.addFCL(&layer4);

/* The previous code is equivalent to:

mlp.addMachine(&layer1);
mlp.addLayer();
mlp.addMachine(&layer2);
mlp.connectOn(&layer1);
mlp.addLayer();
... and so on...

Another possibility:

mlp.addFCL(&layer1);
mlp.addMachine(&layer2);
mlp.connectOn(&layer1);
mlp.addLayer();
... and so on...

*/

// Never forget that!
mlp.build();

As you can see, it’s pretty easy. However, don’t forget the call to the build() method
after constructing your machine: it realizes the connections between machines and check
if connections are valid. You should call this method in the constructor if you are doing
a sub-class of ConnectedMachine.
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Note also that several calls to connectOn() method for the same machine will add
all outputs of specified machines in connectOn() at the input of the last added machine.
Example:

Linear layer1_1(n_inputs, n_hidden_units);
Linear layer1_2(n_inputs, n_hidden_units);
Tanh layer2_correct(2*n_hidden_units);
Tanh layer2_wrong(n_hidden_units);

// The following code is correct:
ConnectedMachine mlp;
mlp.addMachine(&layer1_1);
mlp.addMachine(&layer1_2);
mlp.addLayer();
mlp.addMachine(&layer2_correct);
mlp.connectOn(&layer1_1);
mlp.connectOn(&layer1_2);
mlp.build();

/* But this one is false:
ConnectedMachine mlp;
mlp.addMachine(&layer1_1);
mlp.addMachine(&layer1_2);
mlp.addLayer();

// layer2_wrong don’t have the right number of inputs
mpl.addMachine(&layer2_wrong);
mlp.connectOn(&layer1_1);
mlp.connectOn(&layer1_2);

// build will do an error here
mlp.build();

*/

6.2 SVM for dummies

In Torch SVM classes derive from a class called QCMachine (for Quadratic Constrained
Machine) which is a little bit more general than SVM. Two classes are provided:
SVMClassification and SVMRegression. Both require a Kernel in argument. This
is a class which has a method eval() which evaluates the kernel given two sequences. In
fact, kernels provided in the core of Torch use only the first frame of each sequence, but
everything is possible... To create a new kernel class, you just have to define the method
eval().

Provided kernels are:

• DotKernel, the dot product kernel.

• PolynomialKernel, which computes k(x, y) = (sx.y + r)d.

• GaussianKernel, k(x, y) = e−γ‖x−y‖2
.
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• SigmoidKernel1, k(x, y) = tanh(s ∗ x.y + r).

I will focus now on SVM for classification, but the code is similar to SVM for regres-
sion. Note that SVM needs to minimize the following quadratic function:

Q(w, b) = 0.5 ∗ ‖w‖2 + ∑
j

C j|1− y j ∗ (w.x j + b)|+

(This is when using a dot-product. Otherwise we send data in a feature space using a
kernel). (x j, y j) are the training examples and C j is the trade-off between the margin and
the error for example j. In classification, targets y j must be +1 or −1.

Then to create an SVM for classification, for example, it’s pretty basic:

// Choose a kernel
GaussianKernel kernel(gamma);

// You made it!
SVMClassification svm(&kernel);

If you need it, you can specify the weights C in an optional parameter, but the size of
this array must correspond to the real number of examples of the data set you will use to
train the SVM. Usually, don’t care, you will only set the option "C" using setROption():
it will set all C j to the given value. You could also set the real option "cache size":
the larger the better (faster). It’s the size in mega bytes of the cache used to store the
most used parts of the kernel matrix, during training.

1That’s not really a kernel, because it doesn’t satisfy Mercer conditions.
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CHAPTER 7 Measurers

7.1 Introduction

Measurers are strange entities which can measure anything you have in mind. They are
usually automatically called during training and testing phases. A Measurer needs two
things to live:

• a DataSet. Even if it doesn’t use it for measuring, the Trainer uses it to know
when to call the measurer. Remember that!

• a XFile. The measurer should output all its measures to this file. If the user
doesn’t want (for some special reason) to specify one at the construction, he can
pass one NullXFile.

The measurer is equipped with four methods:

• measureExample() which should be called by the Trainer after doing a forward()
for each example (or another similar method, if this one doesn’t make sense).

• measureIteration() which should be called after having seen all examples.

• measureEnd() which should be called at... the end! It could be the end of training
or testing phase.

• reset() called once by the Trainer before the training or testing phase.

The interpretation of measureIteration() and measureEnd() could differ slightly from
one measurer to another.

Note also that measurers have an option called "binary mode" which specifies how
they should encode their outputs in their XFile stream. There are a lot of measurers, so
I’ll focus on only two examples here, to show how you could use them.

7.2 MSEMeasurer

This measures the mean-square error between the current targets of a DataSet and the
given input sequence. Example: suppose you want to measure the MSE during training
of a machine called mlp on the training data set data:
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// We will put results in a file on disk
DiskXFile mse_file("the_mse_error", "w");

// Create it
MSEMeasurer mse_meas(&mlp.outputs, &data, &mse_file);

/* In fact, as you will see in the next chapter, Trainer
take a list of measurers...
Add this measurer to a list.

*/
MeasurerList measurers;
measurers.addNode(&mse_meas);

// Now, give this list to the Trainer...

Note also that MSEMeasurer has several options to normalize by the number of ex-
amples, of frames and by the frame size.

7.3 ClassMeasurer

It measures the classification error of the given inputs compared to the current targets
of a DataSet. However, there are many ways to encode a class: therefore, in Torch
there is a class called ClassFormat for specifing this format. Three formats are already
proposed:

• MultiClassFormat: the classes are encoded with one real for each class (usually
it’s an integer like 0, 1, ...).

• TwoClassFormat: like MultiClassFormat, but it outputs an error if it detects more
than two classes. It has been included, because a lot of algorithms work only with
two classes.

• OneHotClassFormat: given a vector v encoded in “one-hot” format, vi = 1 if v
corresponds to the class i, else vi = 0. Concrete example: if it has three classes, the
first one will be encoded with 100, the second with 010, and the last with 001.

A ClassMeasurer takes a ClassFormat and a DataSet. It assumes that the given
inputs and the targets of the DataSet are encoded in the same specified format.

Example: suppose you want to measure the class error during training of a machine
called mlp on the training data set data. The DataSet has a target frame size equal to
n_targets, and they are encoded in “one-hot” format. The mlp has n_targets outputs.

// We will put results in a file on disk
DiskXFile class_file("the_class_error", "w");

// Create the encoding format
OneHotClassFormat class_format(n_targets);

// Create it
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ClassMeasurer class_meas(&mlp.outputs, &data, &class_format, &class_file);

/* In fact, as you will see in the next chapter, Trainer
take a list of measurers...
Add this measurer to a list.

*/
MeasurerList measurers;
measurers.addNode(&class_meas);

// Now, give this list to the Trainer...

Note also that ClassMeasurer has two optional parameters in the constructor to
specify if it prints the confusion matrix or not. (At each iteration or when calling
measureEnd()).
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CHAPTER 8 Train The Beast

A Trainer takes a machine in its constructor, and is able to train and test it.

void train(DataSet *data_, MeasurerList *measurers);
void test(MeasurerList *measurers);

During the train phase, you have the possibility of given a list of Measurer. The trainer
should have to call them during training. To test the machine, use the test() method.
The trainer knows on which DataSet to call the Measurer, because each Measurer is
associated with a DataSet.

As the core of Torch contains two kinds of machine (SVM and gradient ma-
chines), there are two kinds of Trainer for these machines: StochasticGradient for
GradientMachine and QCTrainer for SVM. I’ll focus on these classes now, and then I’ll
introduce ensemble models such as Bagging, Adaboost and KFold.

8.1 StochasticGradient

This trainer takes a GradientMachine and a Criterion at construction. A Criterion
is a class designed for this Trainer: it gives the cost function to be used to train the
given machine. A Criterion has an output with a frame size of one. The output gives
an error, which can be taken into account by the Trainer to stop training, if this error
tends to be constant. A criterion is also able to backpropagate this error. Finally, a
Criterion has a DataSet field named data, set by the trainer before training (on the
training set) using the method setDataSet(). It can be useful to compute the error!

Several criterion are given as standard:

• MSECriterion: computes the MSE between the inputs of the criterion and the
targets in its associated DataSet.

• ClassNLLCriterion: a criterion designed to train a gradient machine via a max-
imization of the negative log-likelihood. Input i of the criterion should be the log-
probability for class i. This Criterion needs a ClassFormat at the construction,
in order to know the target encoding format of the training DataSet.

• WeightedMSECriterion: as for MSECriterion, but you can give a weight for each
example of the training DataSet. Note that the size of the weight vector must
correspond to the number of real example in the training DataSet.
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• MultiCriterion: this is a Criterion which is a weighted sum of other Criterion.
It takes an array of Criterion. By default, the weights are equal to one.

Given a Criterion, StochasticGradient will train a GradientMachine using a
stochastic gradient descent algorithm. It has several options:

• "end accuracy": if the difference between the previous error and the current error
given by the Criterion is less than the given value, stop training. By default, this
is set to 0.0001.

• "learning rate": if λ is the given value, the update of a weight w will be wt+1 =
wt − λ ∗ δC

δwt . Set to 0.01 by default.

• "learning rate decay": if µ is the given value, the learning rate λi used at
iteration i (that is after having seen all examples i times) will be λi = λ

1+i µ . Default
value is 0.

• "max iter": if the number of iterations is equal to the given number, training will
end. Default value is 25.

• "shuffle": if true, use shuffled indices to access the training examples. true is
the default value.

Note also that the Measurer associated with the training set will compute the error
on the fly.

Example: load a DataSet, train a MLP for 50 iterations using maximization of the
negative log-likelihood, and print the train error in a file.

// Create a data set from ’file’
MatDataSet data(file, n_inputs, n_targets);

// Normalize it!
data.normalize();

// Create a MLP with LogSoftMax outputs
ConnectedMachine mlp;

Linear layer1(n_inputs, n_hidden_units);
Tanh layer2(n_hidden_units);
Linear layer3(n_hidden_units, n_targets);
LogSoftMax layer4(n_targets);

mlp.addFCL(&layer1);
mlp.addFCL(&layer2);
mlp.addFCL(&layer3);
mlp.addFCL(&layer4);

// Build it!
mlp.build();

// Just to be faster. Not required.
mlp.setPartialBackprop();
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// Use one-hot class format
OneHotClassFormat class_format(&data);

// The classification measurer: output results in ’the_class_error’
DiskXFile out("the_class_error", "w");
MeasurerList measurers;
ClassMeasurer class_meas(mlp.outputs, &data, &class_format, &out);
measurers.addNode(&class_meas);

// The Negative Log-Likelihood criterion
ClassNLLCriterion nllc(&class_format);

// The trainer
StochasticGradient trainer(&mlp, &nllc);
trainer.setIOption("max iter", 50);

// Train it!
trainer.train(&data, &measurers);

8.2 QCTrainer

This is designed to train QCMachine, and thus it can train an SVM. It has several options:

• "iter shrink": the number of iterations before trying to shrink variables which
seem to be fixed at bounds. After shrinking, the trainer will wait this number of
iterations before trying to shrink again. The default value is 100, but you should
tune this option, especially when using noisy data set. To deactivate shrinking,
give a large number here.

• "end accuracy: the trainer will stop if all non-shrinked variables verify the KKT
conditions with the given accuracy. Usually, the default value (0.01) works well.

• "iter message": gives the number of iterations between printing a message of the
current number of active variables and the maximum KKT error.

• "unshrink": if false, the trainer will test at the end of training if the shrinked
variables satisfy the KKT conditions. If not, it will unshrink variables and continue
training. It is not encouraged to set this value to true. Instead, put a large value
in "iter shrink" in order to deactive shrinking.

• "max unshrink": if unshrink is set, the train will do unshrinking at most the given
number of times. After that, shrinking will be deactived.

Note that all Measurer given to QCTrainer during the training phase will be ignored.
You can test the machine only using the test() method.

Example:

/* Create a data set from ’file’
As we want to do classification with SVM, the target values



44 Chapter 8. Train The Beast

must be -1 or 1.
*/
MatDataSet data(file, n_inputs, 1);

// Choose a kernel
GaussianKernel kernel(gamma);

// You made it!
SVMClassification svm(&kernel);

// Trade-off error/margin
svm.setROption("C", 100);

// Cache size: 100Mo
svm.setROption("cache size", 100);

// The trainer...
QCTrainer trainer(&svm);

// Train the svm!
trainer.train(&data, NULL);

8.3 Bagging And Boosting

Bagging and Boosting are Trainer implemented in a similar manner. Thus I will
focus only on the Bagging class here. These classes take in the constructor of a
WeightedSumMachine. Essentially, a WeightedSumMachine takes an array of Trainer,
and possibly some weights, and is able to calculate (in its forward() method) the
weighted sum of the ouput of each machine associated with each trainer, given some
inputs. The Boosting trainer will optimize the weights of this machine.

Doing bagging can be divided in four steps:

• Create n_bag trainers (associated to n_bag machines), where n_bag is the number
of bags you want:

MLP **mlp = (MLP **)allocator->alloc(sizeof(MLP *)*n_bag);
StochasticGradient **trainer = (StochasticGradient **)

allocator->alloc(sizeof(StochasticGradient *)*n_bag);

for(int i = 0; i < n_bag; i++)
{
mlp[i] = new(allocator) MLP(n_inputs,n_hu,n_targets);

trainer[i] = new(allocator) StochasticGradient;
trainer[i]->setIOption("max iter", max_iter);
trainer[i]->setROption("end accuracy", accuracy);
trainer[i]->setROption("learning rate", learning_rate);
trainer[i]->setROption("learning rate decay", decay);

}
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• Create a WeightedSumMachine. You have the possiblility of giving an array of
measurers which will be called during training of each machine:

WeightedSumMachine bag_machine(trainer, n_bag, NULL);

• Create the bagging trainer:

Bagging bagging(&bag_machine);

• Train...

// Suppose we want to measure the MSE of the bagging...
DiskXFile out("the_mse_error", "w");
MSEMeasurer mse_meas(bag_machine.outputs, &data, &out);
MeasurerList measurers;
measurers.addNode(&mse_meas);

// Go...
bagging.train(&data, &measurers);

8.4 KFold

The KFold class is not a Trainer, but an Object which takes a Trainer. As it doesn’t
correspond to any other category, I will present it here. It provides an interface to sample
data, for use by methods such as cross-validation. It’s pretty simple to use: just provide
a Trainer and the number of folds

KFold(Trainer* trainer_, int kfold_);

Then call the method

crossValidate(DataSet *data, MeasurerList *train_measurers=NULL,
MeasurerList *test_measurers=NULL,

MeasurerList *cross_valid_measurers=NULL);

Where train_measurers are called in each “train pass” for each fold, test_measurers
are called in each“test pass” for each fold, and cross_valid_measurers are called during
the “cross-validation loop”.

If you need to, you can redefine the method sample() which by default provides
samples for the standard cross-validation.


