This class is used to train any distribution using the EM algorithm.
Inheritance:
Public Fields
-
Distribution* distribution
- the distribution to train
-
real end_accuracy
- the stopping criterion regarding the accuracy for EM
-
int max_iter
- the stopping criterion regarding the number of iterations for EM
-
bool viterbi
- when viterbi is true, use Viterbi training instead of EM training
Public Methods
-
EMTrainer(Distribution* distribution_)
-
virtual void decode(MeasurerList* measurers)
- this method computes the most likely path into the distribution.
Inherited from Trainer:
Public Methods
-
virtual void train(DataSet* data_, MeasurerList* measurers)
-
virtual void test(MeasurerList* measurers)
-
static Allocator* extractMeasurers(MeasurerList* measurers, DataSet* train, DataSet*** datas, Measurer**** meas, int** n_meas, int* n_datas)
-
virtual void loadXFile(XFile* file)
-
virtual void saveXFile(XFile* file)
Inherited from Object:
Public Fields
-
Allocator* allocator
Public Methods
-
void addOption(const char* name, int size, void* ptr, const char* help="")
-
void addIOption(const char* name, int* ptr, int init_value, const char* help="")
-
void addROption(const char* name, real* ptr, real init_value, const char* help="")
-
void addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
-
void addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
-
void setOption(const char* name, void* ptr)
-
void setIOption(const char* name, int option)
-
void setROption(const char* name, real option)
-
void setBOption(const char* name, bool option)
-
void setOOption(const char* name, Object* option)
-
void load(const char* filename)
-
void save(const char* filename)
-
void* operator new(size_t size, Allocator* allocator_=NULL)
-
void* operator new(size_t size, Allocator* allocator_, void* ptr_)
-
void operator delete(void* ptr)
Documentation
This class is used to train any distribution using the EM algorithm.
It can also train using the Viterbi training algorithm.
- Distribution* distribution
- the distribution to train
- real end_accuracy
- the stopping criterion regarding the accuracy for EM
- int max_iter
- the stopping criterion regarding the number of iterations for EM
- bool viterbi
- when viterbi is true, use Viterbi training instead of EM training
- EMTrainer(Distribution* distribution_)
- virtual void decode(MeasurerList* measurers)
- this method computes the most likely path into the distribution.
mainly used for sequential distribution such as HMMs.
- This class has no child classes.
- Author:
- Samy Bengio (bengio@idiap.ch)
Alphabetic index HTML hierarchy of classes or Java
This page was generated with the help of DOC++.