This class represents a Trainer that implements the well-known Bagging algorithm (Breiman, 1996).
![[more]](icon1.gif) WeightedSumMachine* w_machine
WeightedSumMachine* w_machine
![[more]](icon1.gif) int n_trainers
int n_trainers
![[more]](icon1.gif) int** unselected_examples
int** unselected_examples
![[more]](icon1.gif) int** selected_examples
int** selected_examples
![[more]](icon1.gif) int* n_unselected_examples
int* n_unselected_examples
![[more]](icon1.gif) int* is_selected_examples
int* is_selected_examples
![[more]](icon1.gif) Bagging(WeightedSumMachine* w_machine)
 Bagging(WeightedSumMachine* w_machine)
![[more]](icon1.gif) virtual   void bootstrapData(int* selected, int* is_selected, int n_examples)
virtual   void bootstrapData(int* selected, int* is_selected, int n_examples)
 virtual   void train(DataSet* data_, MeasurerList* measurers)
virtual   void train(DataSet* data_, MeasurerList* measurers)
 virtual   void test(MeasurerList* measurers)
virtual   void test(MeasurerList* measurers)
 static   Allocator* extractMeasurers(MeasurerList* measurers, DataSet* train, DataSet*** datas, Measurer**** meas, int** n_meas, int* n_datas)
static   Allocator* extractMeasurers(MeasurerList* measurers, DataSet* train, DataSet*** datas, Measurer**** meas, int** n_meas, int* n_datas)
 virtual   void loadXFile(XFile* file)
virtual   void loadXFile(XFile* file)
 virtual   void saveXFile(XFile* file)
virtual   void saveXFile(XFile* file)
 Allocator* allocator
Allocator* allocator
 void addOption(const char* name, int size, void* ptr, const char* help="")
void addOption(const char* name, int size, void* ptr, const char* help="")
 void addIOption(const char* name, int* ptr, int init_value, const char* help="")
void addIOption(const char* name, int* ptr, int init_value, const char* help="")
 void addROption(const char* name, real* ptr, real init_value, const char* help="")
void addROption(const char* name, real* ptr, real init_value, const char* help="")
 void addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
void addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
 void addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
void addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
 void setOption(const char* name, void* ptr)
void setOption(const char* name, void* ptr)
 void setIOption(const char* name, int option)
void setIOption(const char* name, int option)
 void setROption(const char* name, real option)
void setROption(const char* name, real option)
 void setBOption(const char* name, bool option)
void setBOption(const char* name, bool option)
 void setOOption(const char* name, Object* option)
void setOOption(const char* name, Object* option)
 void load(const char* filename)
void load(const char* filename)
 void save(const char* filename)
void save(const char* filename)
 void* operator new(size_t size, Allocator* allocator_=NULL)
void* operator new(size_t size, Allocator* allocator_=NULL)
 void* operator new(size_t size, Allocator* allocator_, void* ptr_)
void* operator new(size_t size, Allocator* allocator_, void* ptr_)
 void operator delete(void* ptr)
void operator delete(void* ptr)
This class represents a Trainer that implements the well-known Bagging algorithm (Breiman, 1996). A "bagger" contains a series of trainers, each trained on a bootstrap of the original dataset. The output of the bagging is then the average of the output of each trainer.It is implemented using a WeightedSumMachine that performs the combination.
 WeightedSumMachine* w_machine
WeightedSumMachine* w_machine
 int n_trainers
int n_trainers
 int** unselected_examples
int** unselected_examples
 int** selected_examples
int** selected_examples
 int* n_unselected_examples
int* n_unselected_examples
 int* is_selected_examples
int* is_selected_examples
 Bagging(WeightedSumMachine* w_machine)
 Bagging(WeightedSumMachine* w_machine)
 virtual   void bootstrapData(int* selected, int* is_selected, int n_examples)
virtual   void bootstrapData(int* selected, int* is_selected, int n_examples)
Alphabetic index HTML hierarchy of classes or Java