class MAPHMM

This class is a special case of a HMM that implements the MAP algorithm for HMM transitions probabilities.

Inheritance:


Public Fields

[more]HMM* prior_distribution
The prior distribution used in MAP
[more]real weight_on_prior
The weight to give to the prior parameters during update
[more]real log_weight_on_prior
log(weight_on_prior)
[more]real log_1_weight_on_prior
log(1-weight_on_prior_

Public Methods

[more] MAPHMM(int n_states_, Distribution** states_, real** transitions_, HMM* prior_distribution_)
[more]virtual void eMUpdate()
map adaptation method for transitions probabilities


Inherited from HMM:

Public Fields

oint n_states
oreal prior_transitions
oDistribution** states
oDistribution** shared_states
oreal** transitions
oreal** log_transitions
oreal** dlog_transitions
oreal** transitions_acc
oSequence* log_alpha
oSequence* log_beta
oSequence* arg_viterbi
oint last_arg_viterbi
oSequence* viterbi_sequence
oSequence* log_probabilities_s
obool initialize

Public Methods

ovirtual void printTransitions(bool real_values=false, bool transitions_only=false)
ovirtual void logAlpha(Sequence* inputs)
ovirtual void logBeta(Sequence* inputs)
ovirtual void logViterbi(Sequence* inputs)
ovirtual void decode(Sequence* input)
ovirtual void logProbabilities(Sequence* inputs)


Inherited from Distribution:

Public Fields

oreal log_probability
oSequence* log_probabilities

Public Methods

ovirtual real logProbability(Sequence* inputs)
ovirtual real viterbiLogProbability(Sequence* inputs)
ovirtual real frameLogProbability(int t, real* f_inputs)
ovirtual real viterbiFrameLogProbability(int t, real* f_inputs)
ovirtual void eMIterInitialize()
ovirtual void iterInitialize()
ovirtual void eMSequenceInitialize(Sequence* inputs)
ovirtual void sequenceInitialize(Sequence* inputs)
ovirtual void eMAccPosteriors(Sequence* inputs, real log_posterior)
ovirtual void frameEMAccPosteriors(int t, real* f_inputs, real log_posterior)
ovirtual void viterbiAccPosteriors(Sequence* inputs, real log_posterior)
ovirtual void frameViterbiAccPosteriors(int t, real* f_inputs, real log_posterior)
ovirtual void update()
ovirtual void eMForward(Sequence* inputs)
ovirtual void viterbiForward(Sequence* inputs)
ovirtual void frameBackward(int t, real* f_inputs, real* beta_, real* f_outputs, real* alpha_)
ovirtual void viterbiBackward(Sequence* inputs, Sequence* alpha)
ovirtual void frameDecision(int t, real* decision)

Public Members

o Returns the decision of the distribution


Inherited from GradientMachine:

Public Fields

oint n_inputs
oint n_outputs
oParameters* params
oParameters* der_params
oSequence* beta

Public Methods

ovirtual void forward(Sequence* inputs)
ovirtual void backward(Sequence* inputs, Sequence* alpha)
ovirtual void setPartialBackprop(bool flag=true)
ovirtual void frameForward(int t, real* f_inputs, real* f_outputs)
ovirtual void loadXFile(XFile* file)
ovirtual void saveXFile(XFile* file)


Inherited from Machine:

Public Fields

oSequence* outputs

Public Methods

ovirtual void reset()
ovirtual void setDataSet(DataSet* dataset_)


Inherited from Object:

Public Fields

oAllocator* allocator

Public Methods

ovoid addOption(const char* name, int size, void* ptr, const char* help="")
ovoid addIOption(const char* name, int* ptr, int init_value, const char* help="")
ovoid addROption(const char* name, real* ptr, real init_value, const char* help="")
ovoid addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
ovoid addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
ovoid setOption(const char* name, void* ptr)
ovoid setIOption(const char* name, int option)
ovoid setROption(const char* name, real option)
ovoid setBOption(const char* name, bool option)
ovoid setOOption(const char* name, Object* option)
ovoid load(const char* filename)
ovoid save(const char* filename)
ovoid* operator new(size_t size, Allocator* allocator_=NULL)
ovoid* operator new(size_t size, Allocator* allocator_, void* ptr_)
ovoid operator delete(void* ptr)


Documentation

This class is a special case of a HMM that implements the MAP algorithm for HMM transitions probabilities.

oHMM* prior_distribution
The prior distribution used in MAP

oreal weight_on_prior
The weight to give to the prior parameters during update

oreal log_weight_on_prior
log(weight_on_prior)

oreal log_1_weight_on_prior
log(1-weight_on_prior_

o MAPHMM(int n_states_, Distribution** states_, real** transitions_, HMM* prior_distribution_)

ovirtual void eMUpdate()
map adaptation method for transitions probabilities


This class has no child classes.
Author:
Samy Bengio (bengio@idiap.ch) Johnny Mariethoz (marietho@idiap.ch)

Alphabetic index HTML hierarchy of classes or Java



This page was generated with the help of DOC++.