class ParzenDistribution

This class can be used to model a Parzen density estimator with a Gaussian kernel:

Inheritance:


Public Fields

[more]real var
the variance used
[more]DataSet* data
the dataset
[more]int* train_examples_index
the indices of the training examples
[more]real sum_log_var_plus_n_obs_log_2_pi
in order to faster the computation, we can do some "pre-computation" pre-computed sum_log_var + n_obs * log_2_pi
[more]real minus_half_over_var
pre-computed -05 / var


Inherited from Distribution:

Public Fields

oreal log_probability
oSequence* log_probabilities

Public Methods

ovirtual real logProbability(Sequence* inputs)
ovirtual real viterbiLogProbability(Sequence* inputs)
ovirtual real frameLogProbability(int t, real* f_inputs)
ovirtual real viterbiFrameLogProbability(int t, real* f_inputs)
ovirtual void eMIterInitialize()
ovirtual void iterInitialize()
ovirtual void eMSequenceInitialize(Sequence* inputs)
ovirtual void sequenceInitialize(Sequence* inputs)
ovirtual void eMAccPosteriors(Sequence* inputs, real log_posterior)
ovirtual void frameEMAccPosteriors(int t, real* f_inputs, real log_posterior)
ovirtual void viterbiAccPosteriors(Sequence* inputs, real log_posterior)
ovirtual void frameViterbiAccPosteriors(int t, real* f_inputs, real log_posterior)
ovirtual void eMUpdate()
ovirtual void update()
ovirtual void decode(Sequence* inputs)
ovirtual void eMForward(Sequence* inputs)
ovirtual void viterbiForward(Sequence* inputs)
ovirtual void frameBackward(int t, real* f_inputs, real* beta_, real* f_outputs, real* alpha_)
ovirtual void viterbiBackward(Sequence* inputs, Sequence* alpha)
ovirtual void frameDecision(int t, real* decision)

Public Members

o Returns the decision of the distribution


Inherited from GradientMachine:

Public Fields

oint n_inputs
oint n_outputs
oParameters* params
oParameters* der_params
oSequence* beta

Public Methods

ovirtual void forward(Sequence* inputs)
ovirtual void backward(Sequence* inputs, Sequence* alpha)
ovirtual void setPartialBackprop(bool flag=true)
ovirtual void frameForward(int t, real* f_inputs, real* f_outputs)
ovirtual void loadXFile(XFile* file)
ovirtual void saveXFile(XFile* file)


Inherited from Machine:

Public Fields

oSequence* outputs

Public Methods

ovirtual void reset()
ovirtual void setDataSet(DataSet* dataset_)


Inherited from Object:

Public Fields

oAllocator* allocator

Public Methods

ovoid addOption(const char* name, int size, void* ptr, const char* help="")
ovoid addIOption(const char* name, int* ptr, int init_value, const char* help="")
ovoid addROption(const char* name, real* ptr, real init_value, const char* help="")
ovoid addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
ovoid addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
ovoid setOption(const char* name, void* ptr)
ovoid setIOption(const char* name, int option)
ovoid setROption(const char* name, real option)
ovoid setBOption(const char* name, bool option)
ovoid setOOption(const char* name, Object* option)
ovoid load(const char* filename)
ovoid save(const char* filename)
ovoid* operator new(size_t size, Allocator* allocator_=NULL)
ovoid* operator new(size_t size, Allocator* allocator_, void* ptr_)
ovoid operator delete(void* ptr)


Documentation

This class can be used to model a Parzen density estimator with a Gaussian kernel:

where the sum is done on the whole training set.

oreal var
the variance used

oDataSet* data
the dataset

oint* train_examples_index
the indices of the training examples

oreal sum_log_var_plus_n_obs_log_2_pi
in order to faster the computation, we can do some "pre-computation" pre-computed sum_log_var + n_obs * log_2_pi

oreal minus_half_over_var
pre-computed -05 / var


This class has no child classes.
Author:
Samy Bengio (bengio@idiap.ch)

Alphabetic index HTML hierarchy of classes or Java



This page was generated with the help of DOC++.