This class outputs one of the observations as the logProbability.
Inheritance:
Public Fields
-
int column
- The column in the observation vector that corresponds to the logProbability
-
bool apply_log
- do we apply a log transformation
-
real prior
- do we normalize by a given prior
Public Methods
-
TableLookupDistribution(int column_ = 0, bool apply_log_ = true, real prior_ = 1.)
- The column number corresponds to the logProbability which can be normalized by an eventual prior
Public Fields
-
real log_probability
-
Sequence* log_probabilities
Public Methods
-
virtual real logProbability(Sequence* inputs)
-
virtual real viterbiLogProbability(Sequence* inputs)
-
virtual real frameLogProbability(int t, real* f_inputs)
-
virtual real viterbiFrameLogProbability(int t, real* f_inputs)
-
virtual void eMIterInitialize()
-
virtual void iterInitialize()
-
virtual void eMSequenceInitialize(Sequence* inputs)
-
virtual void sequenceInitialize(Sequence* inputs)
-
virtual void eMAccPosteriors(Sequence* inputs, real log_posterior)
-
virtual void frameEMAccPosteriors(int t, real* f_inputs, real log_posterior)
-
virtual void viterbiAccPosteriors(Sequence* inputs, real log_posterior)
-
virtual void frameViterbiAccPosteriors(int t, real* f_inputs, real log_posterior)
-
virtual void eMUpdate()
-
virtual void update()
-
virtual void decode(Sequence* inputs)
-
virtual void eMForward(Sequence* inputs)
-
virtual void viterbiForward(Sequence* inputs)
-
virtual void frameBackward(int t, real* f_inputs, real* beta_, real* f_outputs, real* alpha_)
-
virtual void viterbiBackward(Sequence* inputs, Sequence* alpha)
-
virtual void frameDecision(int t, real* decision)
Public Members
-
Returns the decision of the distribution
Public Fields
-
int n_inputs
-
int n_outputs
-
Parameters* params
-
Parameters* der_params
-
Sequence* beta
Public Methods
-
virtual void forward(Sequence* inputs)
-
virtual void backward(Sequence* inputs, Sequence* alpha)
-
virtual void setPartialBackprop(bool flag=true)
-
virtual void frameForward(int t, real* f_inputs, real* f_outputs)
-
virtual void loadXFile(XFile* file)
-
virtual void saveXFile(XFile* file)
Inherited from Machine:
Public Fields
-
Sequence* outputs
Public Methods
-
virtual void reset()
-
virtual void setDataSet(DataSet* dataset_)
Inherited from Object:
Public Fields
-
Allocator* allocator
Public Methods
-
void addOption(const char* name, int size, void* ptr, const char* help="")
-
void addIOption(const char* name, int* ptr, int init_value, const char* help="")
-
void addROption(const char* name, real* ptr, real init_value, const char* help="")
-
void addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
-
void addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
-
void setOption(const char* name, void* ptr)
-
void setIOption(const char* name, int option)
-
void setROption(const char* name, real option)
-
void setBOption(const char* name, bool option)
-
void setOOption(const char* name, Object* option)
-
void load(const char* filename)
-
void save(const char* filename)
-
void* operator new(size_t size, Allocator* allocator_=NULL)
-
void* operator new(size_t size, Allocator* allocator_, void* ptr_)
-
void operator delete(void* ptr)
Documentation
This class outputs one of the observations as the logProbability. It
can eventually apply a log transformation and/or normalize by a given
prior. It can therefore
be used in conjunction with HMMs to implement the HMM/ANN hybrid model...
- int column
- The column in the observation vector that corresponds to the
logProbability
- bool apply_log
- do we apply a log transformation
- real prior
- do we normalize by a given prior
- TableLookupDistribution(int column_ = 0, bool apply_log_ = true, real prior_ = 1.)
- The column number corresponds to the logProbability which can
be normalized by an eventual prior
- This class has no child classes.
- Author:
- Samy Bengio (bengio@idiap.ch)
Alphabetic index HTML hierarchy of classes or Java
This page was generated with the help of DOC++.