This class can be used to do a "kmeans" on a given set of data.
![[more]](icon1.gif) Sequence* min_cluster
Sequence* min_cluster
![[more]](icon1.gif) KMeans(int n_inputs, int n_gaussians_)
 KMeans(int n_inputs, int n_gaussians_)
![[more]](icon1.gif) virtual   real frameLogProbability(int t, real* inputs)
virtual   real frameLogProbability(int t, real* inputs)
![[more]](icon1.gif) virtual   real frameLogProbabilityOneGaussian(int g, real* inputs)
virtual   real frameLogProbabilityOneGaussian(int g, real* inputs)
![[more]](icon1.gif) initialize the parameters from the data set to false if you
 initialize the parameters from the data set to false if you
 int n_gaussians
int n_gaussians
 real prior_weights
real prior_weights
 EMTrainer* initial_kmeans_trainer
EMTrainer* initial_kmeans_trainer
 MeasurerList* initial_kmeans_trainer_measurers
MeasurerList* initial_kmeans_trainer_measurers
 real* log_weights
real* log_weights
 real* dlog_weights
real* dlog_weights
 real* var_threshold
real* var_threshold
 Sequence* log_probabilities_g
Sequence* log_probabilities_g
 int best_gauss
int best_gauss
 Sequence* best_gauss_per_frame
Sequence* best_gauss_per_frame
 real* sum_log_var_plus_n_obs_log_2_pi
real* sum_log_var_plus_n_obs_log_2_pi
 real** minus_half_over_var
real** minus_half_over_var
 real** means_acc
real** means_acc
 virtual   void reset()
virtual   void reset()
 virtual   void setDataSet(DataSet* data_)
virtual   void setDataSet(DataSet* data_)
 virtual   void setVarThreshold(real* var_threshold_)
virtual   void setVarThreshold(real* var_threshold_)
 virtual   void eMIterInitialize()
virtual   void eMIterInitialize()
 virtual   void iterInitialize()
virtual   void iterInitialize()
 virtual   real viterbiFrameLogProbability(int t, real* inputs)
virtual   real viterbiFrameLogProbability(int t, real* inputs)
 virtual   void sequenceInitialize(Sequence* inputs)
virtual   void sequenceInitialize(Sequence* inputs)
 virtual   void eMSequenceInitialize(Sequence* inputs)
virtual   void eMSequenceInitialize(Sequence* inputs)
 virtual   void frameEMAccPosteriors(int t, real* inputs, real log_posterior)
virtual   void frameEMAccPosteriors(int t, real* inputs, real log_posterior)
 virtual   void frameViterbiAccPosteriors(int t, real* inputs, real log_posterior)
virtual   void frameViterbiAccPosteriors(int t, real* inputs, real log_posterior)
 virtual   void eMUpdate()
virtual   void eMUpdate()
 virtual   void update()
virtual   void update()
 virtual   void frameBackward(int t, real* f_inputs, real* beta_, real* f_outputs, real* alpha_)
virtual   void frameBackward(int t, real* f_inputs, real* beta_, real* f_outputs, real* alpha_)
 virtual   void frameDecision(int t, real* decision)
virtual   void frameDecision(int t, real* decision)
 real log_probability
real log_probability
 Sequence* log_probabilities
Sequence* log_probabilities
 virtual   real logProbability(Sequence* inputs)
virtual   real logProbability(Sequence* inputs)
 virtual   real viterbiLogProbability(Sequence* inputs)
virtual   real viterbiLogProbability(Sequence* inputs)
 virtual   void eMAccPosteriors(Sequence* inputs, real log_posterior)
virtual   void eMAccPosteriors(Sequence* inputs, real log_posterior)
 virtual   void viterbiAccPosteriors(Sequence* inputs, real log_posterior)
virtual   void viterbiAccPosteriors(Sequence* inputs, real log_posterior)
 virtual   void decode(Sequence* inputs)
virtual   void decode(Sequence* inputs)
 virtual   void eMForward(Sequence* inputs)
virtual   void eMForward(Sequence* inputs)
 virtual   void viterbiForward(Sequence* inputs)
virtual   void viterbiForward(Sequence* inputs)
 virtual   void viterbiBackward(Sequence* inputs, Sequence* alpha)
virtual   void viterbiBackward(Sequence* inputs, Sequence* alpha)
 Returns the decision of the distribution
 Returns the decision of the distribution
 int n_inputs
int n_inputs
 int n_outputs
int n_outputs
 Parameters* params
Parameters* params
 Parameters* der_params
Parameters* der_params
 Sequence* beta
Sequence* beta
 virtual   void forward(Sequence* inputs)
virtual   void forward(Sequence* inputs)
 virtual   void backward(Sequence* inputs, Sequence* alpha)
virtual   void backward(Sequence* inputs, Sequence* alpha)
 virtual   void setPartialBackprop(bool flag=true)
virtual   void setPartialBackprop(bool flag=true)
 virtual   void frameForward(int t, real* f_inputs, real* f_outputs)
virtual   void frameForward(int t, real* f_inputs, real* f_outputs)
 virtual   void loadXFile(XFile* file)
virtual   void loadXFile(XFile* file)
 virtual   void saveXFile(XFile* file)
virtual   void saveXFile(XFile* file)
 Sequence* outputs
Sequence* outputs
 Allocator* allocator
Allocator* allocator
 void addOption(const char* name, int size, void* ptr, const char* help="")
void addOption(const char* name, int size, void* ptr, const char* help="")
 void addIOption(const char* name, int* ptr, int init_value, const char* help="")
void addIOption(const char* name, int* ptr, int init_value, const char* help="")
 void addROption(const char* name, real* ptr, real init_value, const char* help="")
void addROption(const char* name, real* ptr, real init_value, const char* help="")
 void addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
void addBOption(const char* name, bool* ptr, bool init_value, const char* help="")
 void addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
void addOOption(const char* name, Object** ptr, Object* init_value, const char* help="")
 void setOption(const char* name, void* ptr)
void setOption(const char* name, void* ptr)
 void setIOption(const char* name, int option)
void setIOption(const char* name, int option)
 void setROption(const char* name, real option)
void setROption(const char* name, real option)
 void setBOption(const char* name, bool option)
void setBOption(const char* name, bool option)
 void setOOption(const char* name, Object* option)
void setOOption(const char* name, Object* option)
 void load(const char* filename)
void load(const char* filename)
 void save(const char* filename)
void save(const char* filename)
 void* operator new(size_t size, Allocator* allocator_=NULL)
void* operator new(size_t size, Allocator* allocator_=NULL)
 void* operator new(size_t size, Allocator* allocator_, void* ptr_)
void* operator new(size_t size, Allocator* allocator_, void* ptr_)
 void operator delete(void* ptr)
void operator delete(void* ptr)
This class can be used to do a "kmeans" on a given set of data. It has been implemented in the framework of a Distribution that can be trained with EM. This means that the kmeans distance is in fact returned by the method logProbability.Note that as KMeans is a subclass of DiagonalGMM, they share the same parameter structure. Hence, a DiagonalGMM can be easily initialized by a KMeans.
 Sequence* min_cluster
Sequence* min_cluster
 initialize the parameters from the data set to false if you
 initialize the parameters from the data set to false if you
 KMeans(int n_inputs, int n_gaussians_)
 KMeans(int n_inputs, int n_gaussians_)
 virtual   real frameLogProbability(int t, real* inputs)
virtual   real frameLogProbability(int t, real* inputs)
 virtual   real frameLogProbabilityOneGaussian(int g, real* inputs)
virtual   real frameLogProbabilityOneGaussian(int g, real* inputs)
Alphabetic index HTML hierarchy of classes or Java